Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at STAR

Jinlong Zhang, for the STAR Collaboration

Shandong University & Brookhaven National Laboratory

RHIC/AGS Users' Meeting June 17th, 2014

Proton Spin Puzzle

Polarized PDFs:

$$\Delta f(x) =$$

$$f^{+}(x) - f^{-}(x)$$

$$< S_p > = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$
(Jaffe-Manohar, 1990)

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx$$

Integral of quark polarization is well measured in DIS to be \sim 30%, some info on decomposition from SIDIS but sea quarks are not well constrained.

$$\Delta G = \int \Delta g(x) dx$$

First experimental evidence of non-zero Δg from 2009 data (See Brain Page's talk)

Flavor Asymmetry of the Sea

Polarized Flavor Asymmetry:

- Valence u and d distributions are well determined from DIS
- Polarized flavor asymmetry $\times (\Delta \bar{u} \Delta \bar{d})$ could help differentiate models
- SIDIS results depend on FFs

Unpolarized Flavor Asymmetry:

- Quantitative calculation of Pauli blocking does not explain \bar{d}/\bar{u} ratio
- Non-perturbative processes may be needed in generating the sea
- E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.

- Ws couple directly to the quarks and anti-quarks of interest
- V-A coupling of the weak interaction leads to perfect spin separation
- W charges allow flavor separation
- Detect W^+/W^- through e^+/e^- decay channels

$$u + \bar{d} \to W^+ \to e^+ + \nu$$
$$d + \bar{u} \to W^- \to e^- + \bar{\nu}$$

Measure parity-violating single-spin asymmetry:

$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

A. Polarized (subscript) proton provides u

A.1 Proton helicity = "+" A.2 Proton helicity = "-"

$$A_L^{W^+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)}$$

* dominate forward W^+

A. Polarized (subscript) proton provides u

A.1 Proton helicity = "+" A.2 Proton helicity = "-"

$$A_L^{W^+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)}$$

* dominate forward W⁺

B. Polarized (subscript) proton provides \bar{d}

B.1 Proton helicity = "+" **B.2** Proton helicity = "-"

$$A_L^{W^+} \propto \frac{\bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2)}{\bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2)} = \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}$$

* dominate backward W+

A. Polarized (subscript) proton provides u

A.1 Proton helicity = "+" A.2 Proton helicity = "-"

$$A_L^{W^+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)} \quad A_L^{W^+} \propto \frac{\bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2)}{\bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2)} = \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}$$

* dominate forward W⁺

B. Polarized (subscript) proton provides \bar{d}

B.1 Proton helicity = "+" **B.2** Proton helicity = "-"

$$A_{L}^{W^{+}} \propto \frac{\bar{d}_{+}^{+}(x_{1})u(x_{2}) - \bar{d}_{-}^{+}(x_{1})u(x_{2})}{\bar{d}_{+}^{+}(x_{1})u(x_{2}) + \bar{d}_{-}^{+}(x_{1})u(x_{2})} = \frac{\Delta \bar{d}(x_{1})}{\bar{d}(x_{1})}$$

* dominate backward W+

Superpose A and B:

$$A_L^{W^+} \propto \frac{-\Delta u(x_1)\bar{d}(x_2) + \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

A. Polarized (subscript) proton provides u

A.1 Proton helicity = "+" A.2 Proton helicity = "-"

B. Polarized (subscript) proton provides
$$\bar{d}$$

B.1 Proton helicity = "+" **B.2** Proton helicity = "-"

$$A_L^{W^+} \propto \bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2) = \bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2) = \bar{d}_-^+(x_1)u(x_2) + \bar{d}_-^+$$

* dominate backward W+

$$A_L^{W^+} \propto \frac{u_+^-(x_1)\bar{d}(x_2) - u_-^-(x_1)\bar{d}(x_2)}{u_+^-(x_1)\bar{d}(x_2) + u_-^-(x_1)\bar{d}(x_2)} = -\frac{\Delta u(x_1)}{u(x_1)} \quad A_L^{W^+} \propto \frac{\bar{d}_+^+(x_1)u(x_2) - \bar{d}_-^+(x_1)u(x_2)}{\bar{d}_+^+(x_1)u(x_2) + \bar{d}_-^+(x_1)u(x_2)} = \frac{\Delta \bar{d}(x_1)}{\bar{d}(x_1)}$$

* dominate forward W⁺

Superpose A and B:

$$A_L^{W^+} \propto \frac{-\Delta u(x_1) \bar{d}(x_2) + \Delta \bar{d}(x_1) u(x_2)}{u(x_1) \bar{d}(x_2) + \bar{d}(x_1) u(x_2)}$$

Switch μ and d

$$A_L^{W^-} \propto \frac{-\Delta d(x_1)\bar{u}(x_2) + \Delta \bar{u}(x_1)d(x_2)}{d(x_1)\bar{u}(x_2) + \bar{u}(x_1)d(x_2)}$$

Expectation for W A_L

- Large parity-violating asymmetries expected.
- Simplified interpretation at forward and backward rapidity.

$$A_{L}^{W^{-}} \propto \frac{-\Delta d(x_{1})\bar{u}(x_{2}) + \Delta \bar{u}(x_{1})d(x_{2})}{d(x_{1})\bar{u}(x_{2}) + \bar{u}(x_{1})d(x_{2})}$$

$$e^{-}$$

$$\bar{u}$$

$$\chi_{1} << \chi_{2}$$

$$d$$

$$\frac{backward e^{-}}{Parallel to W^{-}}$$

$$\bar{u}$$

$$A_{L}^{W^{+}} \propto \frac{-\Delta u(x_{1})\bar{d}(x_{2}) + \Delta \bar{d}(x_{1})u(x_{2})}{u(x_{1})\bar{d}(x_{2}) + \bar{d}(x_{1})u(x_{2})}$$

$$e^{+}$$

$$forward e^{+}$$

$$d$$

$$u$$

$$Anti-parallel to W^{+}$$

$$\bar{d}$$

*Charged lepton tends to emitted parallel (anti-parallel) to $W^-(W^+)$ due to the handedness of produced neutrino.

STAR Detector Overview

Triggering Barrel EM Calorimeter: |η|<1

Triggering Endcap EM Calorimeter: 1.1< |η|<2

Time Projection Chamber: Charged particle tracking |n|<1.3

Sample W Candidates

$W \rightarrow e + \nu$ Candidate Event:

- Isolated track pointing to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

QCD Background Event:

- Several tracks pointing to EM energy deposit in several towers
- Vector p_T sum is balanced by opposite jet, no large "missing energy"

Isolation Cuts

- Match p_T > 10 GeV track to EMC cluster
- Require the energy deposited in the next ring to be <5% of the 2x2 sum
- Require the ratio $E_T^e/E_T^{\Delta R < 0.7}$ to be > 88%

Topological Cuts

P_T -balance:

$$ec{p_T}^{bal} = ec{p_T}^e + \sum_{\Delta R > 0.7} ec{p_T}^{jets}$$
 signed P_T -balance $= \frac{ec{p_T}^e \cdot ec{p_T}^{bal}}{|ec{p_T}^e|}$ required to be $> 14 \text{GeV}$

* Signed p_T -balance vs. E_T^e (data on the left and W MC embedded simulation on the right)

* E_T^e distribution as background cut away

Additional Cut at Forward-rapidity

- Similar isolation and topology cuts as barrel region
- Additionally improve background rejection by using the Endcap Shower Maximum Detector (ESMD)

Events pass all previous cuts

$$R_{ESMD} = \frac{\sum_{i=-3}^{3} E_{i}^{U} + E_{i}^{V}}{\sum_{i=-20}^{20} E_{i}^{U} + E_{i}^{V}} > 0.6$$

Charge Separation

distance D $^{\sim}$ 1/pT , pT=5GeV D $^{\sim}$ 15cm, pT=40GeV D $^{\sim}$ 5cm

- Charge sign reconstruction based on TPC track bending
- Estimate wrong sign contamination by fitting Q * E_T/pT with Gaussian.

Mid-rapidity Background Estimation

* E_{-}^e distribution of W^- (top) and W^+ (bottom) candidate event of 2011+2012 data (black), background contributions , sum of backgrounds and $W^\pm \to e^\pm \nu_e$ MC signal (red-dashed)

$$W^{+} \beta$$
: ~ 0.95, $W^{-} \beta$: ~ 0.9

where $\beta = S/(S+B)$, S and B are the number of signal and background events in [25, 50] GeV

W signal

• "Jacobian Peak"

Primary Background:

Satisfy W selection cuts but contain jets escaping detection at $\eta < -1$ and $\eta > 2$.

- Second EEMC
 Estimate non-existent "east"
 EEMC background based on real west EEMC
- Data-driven QCD

Electroweak Background:

Determined from Monte-Carlo simulation.

- $\bullet \ \ Z \to ee \ MC$
- W $\rightarrow \tau \nu$ MC

W Data from 2009 to 2012

PRL 106, 062002 (2011)

 2009 was a very successful first 500 GeV physics run Statistics increase of an order of magnitude from 2009 to 2012:

STAR pp500 Longitudinal				
Run	L (pb ⁻¹)	$W^+(W^-)$ raw yield		
2009	12	462 (192)		
2011	9	342 (103)		
2012	77	2417 (734)		

With larger statistics, we can look into lepton pseudo-rapidity, η_e , dependence of spin asymmetry

Extract Spin Asymmetry with Profile Likelihood Method

- ✓ Profile Likelihood method was used in combination of 2011 and 2012
- √ Accommodate the low statistics of 2011 dataset

Define a likelihood function for 8 spin-dependent yields from pair of symmetric η region of STAR :

$$L = \prod_{i}^{4} \mathcal{P}(M_{i}^{a}|\mu_{i}^{a})\mathcal{P}(M_{i}^{b}|\mu_{i}^{b})g(\beta^{a})g(\beta^{b})$$

 P(M_i|μ_i) is Poisson probability, for measured spin sorted yield M_i in the expected value μ_i given by :

$$\begin{array}{l} \mu_{++}^{a} = I_{++}N(1 + P_{1}\beta A_{L}^{+\eta e} + P_{2}\beta A_{L}^{-\eta e} + P_{1}P_{2}\beta A_{LL}) \\ \mu_{+-}^{a} = I_{+-}N(1 + P_{1}\beta A_{L}^{+\eta e} - P_{2}\beta A_{L}^{-\eta e} - P_{1}P_{2}\beta A_{LL}) \\ \mu_{-+}^{a} = I_{-+}N(1 - P_{1}\beta A_{L}^{+\eta e} + P_{2}\beta A_{L}^{-\eta e} - P_{1}P_{2}\beta A_{LL}) \\ \mu_{--}^{a} = I_{--}N(1 - P_{1}\beta A_{L}^{+\eta e} - P_{2}\beta A_{L}^{-\eta e} + P_{1}P_{2}\beta A_{LL}) \end{array}$$

*where $P_1(P_2)$ beam polarization, $A_L^{+\eta_e}(A_L^{-\eta_e})$ single-spin asymmetry, A_{LL} double-spin asymmetry, N_a spin averaged yield, $l_{\pm\pm}$ the relative luminosity

• $g(\beta)$ is Gaussian probability for estimated dilution background, $\beta = S/(S+B)$.

Extract asymmetries from likelihood function $L_{2011} \times L_{2012}$

$W A_L$ Result of 2011+2012

- STAR measured the parity-violating single-spin asymmetry A_L for $|\eta_e| < 1.4$ from 2011 and 2012 data
- Provide the first detailed look at the asymmetry's η_e dependence
- $A_L(W^+)$ is consistent with theoretical prediction
- $A_L(W^-)$ is larger than the predictions for $\eta_e < 0$, which is particularly sensitive to $\Delta \bar{u}$

Impact of STAR Result

- STAR 2012 preliminary results included in global fits by DSSV and NNPDF.
- STAR run12 W results provide significant constraints on \bar{u} and \bar{d} polarization.
- Shift in central values for $\Delta \bar{u}$ and $\Delta \bar{d}$ after including STAR run12 preliminary results

W A_{LL} Result of 2011+2012

Measure double spin asymmetry:

$$A_{LL} = \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}$$

• Probes different combination of quark polarizations

$$A_{LL}^{W^+} \sim rac{\Delta u}{u} rac{\Delta ar{d}}{ar{d}} \qquad A_{LL}^{W^-} \sim rac{\Delta d}{d} rac{\Delta ar{u}}{u}$$

- Proposed to test positivity constraints using a combination of A_L and A_{LL}
- First measurement is consistent with predictions from DSSV

Z A_L Result of 2011+2012

$$Z \rightarrow e^+e^-$$
 Candidate

- Limited Z boson production cross section at RHIC energies.
- Fully reconstructed e^+e^- final state.
- Reconstruct initial state kinematics at leading order:

$$x_{1(2)} = \frac{M_{ee}}{\sqrt{s}}e^{\pm yZ}$$

Z A_L Result of 2011+2012

$$Z \rightarrow e^+e^-$$
 Candidate

- A_L^Z is sensitive to the combination of u, ū, d and d̄ polarizations
- Consistent with theoretical predictions within the large uncertainty.

Run 2013 Dataset

	2013 W trigger FOM		
b^-1	100		
$P^2 \mathcal{L}[pb^-1]$	73 -310 GeV		
	40		
Run12			
FOM	20		

STAR pp500 Longitudinal					
Run	L (pb ⁻¹)	P	$P^{2}L\ (pb^{-1})$		
2009	12	0.38	1.7		
2011	9.4	0.49	2.3		
2012	77	0.56	24		
2013	~300	\sim 0.53	~84		

• In 2013, STAR collected an integrated luminosity of \sim 300 pb⁻¹ at $\sqrt{s} = 510$ GeV with an average beam polarization of \sim 53%, which is 3 times greater than total of previous years in FOM.

Forward GEM Tracker

- FGT was fully installed for Run 2013
- Acceptance can be enhanced to $\eta < 2$
- FGT analysis is ongoing, will help charge separation

Projection of W A_L for Run 2013

- Extension of backward and forward acceptance enhances sensitivity to \bar{u} and \bar{d} quark polarization
- Higher precision result is expected from much larger statistics of run13 database (being analyzed).

Summary

- STAR has measured the parity-violating A_L of W bosons as a function of decayed lepton pseudo-rapidity, η_e , which provides significant constraints on $\Delta \bar{u}$ and $\Delta \bar{d}$
- New constraints on light quark sea polarization from W data, preferring a positive $\Delta \bar{u}$
- A_{LL} of W production and A_L of Z production were also firstly measured, consistent with the theoretical predictions.
- Higher precision data being analyzed now from Run 13

Backup

2009 STAR W Results

• 2009 was a very successful first 500 GeV physics run

PRD 85, 92010 (2012)

\overline{W} $A_L(\eta_e)$: 2012 Preliminary Results vs. 2011+2012 Results

Second EEMC Background

The background events rejected by the **real** EEMC which are measured in the positive detector η bins correspond to the background event that would be removed from the signal yield in the negative detector η bins by a **fictitious** EEMC on the east side of STAR.

Forward-rapidity Background Estimation

- Similar background estimation to mid-rapidity, but based on P_T -Balance
- Combined 2011 and 2012

Unpolarized background β

Systematic Uncertainties

- Beam polarization uncertainty: correlated scale 3.4%
- Relative luminosity uncertainty: correlated offset $\Delta A_L = 0.007$
- Background estimation: less than 10% of statistical error

pp \sqrt{s} : 500GeV vs 510GeV

- Expect negligible difference in A_L from 2% change in \sqrt{s} .
- CHE(NLO) curves with DSSV confirm this expectation